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Abstract We study the classical scattedng of a point particle from one and WO rotating hard 
d i m  in a plane, as an idealization of the scattering off a rowing targer. The system displays 
regular or chaotic behaviour depending on the value of the only constant of motion: the Iacobi 
integd. We present msults on the tnnsition between regular and chaotic behaviour in terms of 
the periodic orbits of the system. For certain ranges of the Iacobi integral the dynamics is fully 
hyperbolic. The number of symbols needed to charactexize the invariant set is different in each 
of those intervals and may beeome arbitradly high. 

1. Introduction 

In recent years the interest in the effects of classical chaos in quantum mechanics and its 
applications in atomic and molecular systems has increased enormously, both for bounded 
and scattering systems. A lot of work has been done in this direction in connection with 
Rydberg atoms [l] and the hydrogen atom in a strong magnetic field [2]. The irregular 
features found in the spectra can be explained in terms of the underlying classical chaotic 
motion due to the nonlinear potential induced by the strong magnetic field or by the coupling 
of the hydrogenic orbital motion of the electron and the rotational motion of the nuclei 
treated as a rigid rotor. In the same way, some advances have been made in connection 
with scattering systems (see 131 and references therein) where the properties of the fluctuating 
part of the S-matrix are related with the classical behaviour of the system. 

For twenty years in physical chemistry classical models for reactive scattering have 
been investigated using full threebody interaction potentials. For a review see [4]. The 
complication here is related to the large number of degrees of freedom for the general 
problem, apart from the complications that might arise from the nonlinear dynamics. In 
this direction, Wintgen and co-workers have studied the case of the helium atom in two 
dimensions 1.51 and recently found a new class of periodic orbits whose existence is a true 
three-body effect. The less studied case of scattering systems has been mainly approached 
in astronomy in connection with the satellite-capture problem, but those studies have been 
focused to the fractal structure displayed on the initial-value space as a function of an 
outgoing condition 161. 

The aim of the present paper is to shed some light on the problem of rotating targets. 
As a simple model for a rotating target we take either one or two hard discs moving along 
a circle with constant speed. 

The model with two discs may be viewed as a model for two relevant physical processes. 
On one hand it relates to the aseonomical reduced three-body problem (RTBP) with repulsive 
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forces. On the other hand it is relevant to the scattering of an electron off a rotating diatomic 
molecule. Note that in both cases energy transfer to the rotating core is excluded. 

The model with one disc is used as the simplest version of a rotating target since it 
already shows the qualitative features which tum out to be important in the two-disc model. 
A discussion of the differences will show that a salient feature of the two-disc model is the 
existence of a periodic orbit for arbitrarily high energies, which is absent with a single disc. 

The system is introduced in section 2 where the only integral of motion is derived, 
namely the Jacobi integral. In section 3 we study numerically the initial value space and 
some quantities that characterize the outgoing states. There, we find parameter ranges 
where chaotic scattering occurs. In section 4, the periodic orbits are fully characterized in 
terms of some primitive periodic orbits that are the skeleton of the dynamics of the system. 
These primitive periodic orbits are obtained analytically, and the homoclinic connections 
between such orbits determines whether regular or irregular scattering occurs. The invariant 
manifolds of the primitive periodic orbits are used in section 5 to discuss the transition 
between different kinds o f  dynamics that arise in this system. Information about the stability 
of such orbits is obtained. Section 6 is devoted to the discussion of the two-disc system, i.e. 
the reduced threebody system. A summary of our results and conclusions are presented in 
section 7. 

2. The rotating disc model and the Jacobi integral 

The RTBP is defined [7,8] as the motion of a light point particle in a plane under the action 
of gravitational forces due to two massive bodies. The massive bodies revolve around their 
centre of gravity under their mutual attraction in (closed) Kepler orbits, independently of the 
presence of the projectile. From here on, we will refer to the system formed by the massive 
bodies as the binary. In the limit of infinite mass for the binary the Hamiltonian of this 
system may be expressed as the motion of a single particle in a lime-dependent potential. 
Taking the centre of gravity as the origin of Cartesian X-Y coordinates, the Hamiltonian 
of the system is given by 

(1) 
where the potential V(X, Y, t) depends explicitly on time through the terms involving the 
positions of the primaries, Ri(t) for i = 1.2. Then, the energy of the system is no longer 
a constant of motion. 

We will investigate only the case where the motion of the binary is circular, and for 
simplicity we consider models where the primaries have equal mass, although this is not 
necessary for the following. Because of the particular symmetry of the circle, we can reduce 
the dynamics of the system by passing to a rotating reference frame. Instead of writing the 
Hamiltonian in a static (sidereal) coordinate system, we use a frame of reference (synodic) 
that rotates with the same angular velocity as the primaries do. We choose the new x-axis 
as the line joining the primaries. Then, by means of a canonical transformation (indeed a 
point contact transformation) with the generating function given by 

H = $(P: + P;) + V(X, Y. t )  

W = P,(xcoswt-ysinof)+ P,.(xsinot+ycoswf) (2) 

(3) 

we obtain the new Hamiltonian 

J = $(P$ + p$ + V(X, Y) - ~ ( X P ,  - Y P J .  
This new Hamiltonian J does not involve time explicitly, so it corresponds to an integral 
of motion, the so-called Jacobi integral. The Jacobi integral can be written in terms of the 
old coordinates in the sidereal frame, having exactly the same analytical expression as (3). 
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Figure 1. Geomeuy of the twDdisc system. The hard discs of radius d rotate with constant 
angular velocity o on a circular orbit. The distance between the centres is 2R. The initial phase 
of the discs. i.e. the angular position when the particle enters the interaction region is v. 

It should also be mentioned that the existence of the Jacobi integral depends strongly 
on the particular symmetry of the circular orbit of the binary, and does not exist when the 
motion is elliptic. This results from the constant angular velocity of the binary for circular 
motion. After performing the same canonical kansformation as before, for the elliptic case 
the primaries still vibrate anharmonically giving rise to the explicit appearance of time in 
the new Hamiltonian. 

First we consider the classical motion of a free particle in a plane scattered by one 
massive disc of radius d that rotates on a circular orbit of radius R > d with constant 
angular velocity w and whose motion is not affected by the collision with the particle 
(figure 1). As we shall see below, this system and the two-disc system display the same 
qualitative features. In both cases, the Hamiltonian is given by (1) and the Jacobi integral (3) 
remains a constant of motion. The potential appearing in (1) and (3) is zero everywhere 
except inside the discs, where it has an infinite value. 

The dynamics in the sidereal coordinate system for the model are straightforward since 
the velocity between bounces remains constant. Note that the particle is accelerated when 
it collides with the front of a disc (with respect to the rotation), decelerated when it 
collides with the back, and keeps the same velocity when it collides radially (figure 2). 
We decompose the velocity vectors of the projectile and the collision point on the disc into 
a parallel and a perpendicular component relative to the tangent of the disc at the collision 
point. Then the outgoing velocities (in the sidereal coordinate system) are given by 

where V, is the perpendicular velocity of the collision point. 
In both limiting cases w = 0, bo the target consists of one static disc of radius d or 

R + d, respectively. The system is integrable as energy and angular momentum are two 
independent constants of the motion. No localized orbits are accessible to the scattering 
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motion. In contrast, in the two-disc system for w = 0 the scattering trajectories can approach 
the periodic orbit that lies on the line joining the centres of the discs. 

3. Chaotic and regular scattering: numerical results 

In this section we present results for the model introduced in the preceding section. We 
choose the radius of the disc d = 1, the radius of the circular orbit R = 3, and the angular 
velocity of the disc o = 1.0. The sense of rotation of the disc is counterclockwise. We 
choose the initial velocity of the projectile as negative and parallel to the x-axis. The impact 
parameter is given by the initial value of the Y coordinate. The origin is the centre of the 
circular orbit. The impact parameter, the initial velocity and the initial phase of the disc 
define the initial conditions for the system. The disc starts to revolve when the particle 
enters the interaction region (9 + y2 -= (R + d)2). 

There are two kinds of scattering experiments that we have studied so far. On the one 
hand, we considered for every impact parameter the same initial velocity (or initial energy). 
This means that two different impact parameters correspond to different Jacobi integrals. 
On the other hand, we fixed the Jacobi integral throughout the impact parameter range. In 
both cases, we performed Monte Carlo calculations on the initial conditions space (initial 
phase (o E [0,2a) and impact parameter b = yo E [-R-d, R+dJ) and studied the structure 
of this (b. (o)-plane for 0, 1, 2, 3, . . . bounces. For fixed initial phase, we studied the time 
delay, the length increment of the najectories, the number of bounces and the scattering 
angle to characterize the outgoing state. The time delay and length increment of the path 
in the interaction region are referred to those of the free particle, i.e. a particle which does 
not bounce with the disc has time delay and length increment equal to zero. 
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3.1. Constant initial energy 

In figure 3 we show a Monte Carlo calculation in the initial conditions space (b, 'p) when we 
shoot with constant initial velocity U? = -1.0. Each frame in this figure represents those 
initial conditions whose number of bounces is equal to 0, 1, 2, and 3 or more, respectively. 
The region where a large number of bounces is found lies approximately between 0 and 2 
for the impact parameter and 3 and 3.5 for the initial phase (modulo 2n). The (self-similar) 
snail-structures are responsible for the chaotic behaviour in the system. In figure 4(a) we plot 
the time delay and the number of bounces as a function of the impact parameter for constant 
initial phase (0 = 3.33 and U? = -1.0; figures 4(b) and (c )  show successive enlargements 
of figure 4(a). The self-similar and fractal structure of the subset of impact parameters that 
lead to wild fluctuations and singularities on the functions is clearly visible. Topological 
chaos is then found in the system [3, 91. Beside the self-similarity, in figures 4(b) and (c) 
we also note that the distance between neighbouring peaks from the infinite sequence of 
singularities becomes smaller in a geometrical progression displaying accumulation points. 
Here, very long time delays are reached without increasing significantly the number of 
bounces. The corresponding orbits loose after a few bounces almost all the energy, so the 
time needed for the next bounce rises up considerably. These orbits are the analog to the 
parabolic orbits that reach infinity with velocity equal zero in the Kepler problem. 

Since the system is invariant to scale transformations Gust as billiards do), the dynamics 
are preserved when the ratio p = U:''/@ is constant. Chaotic scattering is found for p w 1. 
For uiC1 small compared to o, the projectile is scattered out of the interaction region mainly 
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Figore 3. Calculation with Monte Carlo choice for the initial conditions in the one-disc 
model. We mark the initial conditions leading to escape (Q) zero, (b) one, (c) W O  and 
( d )  tiuw or more bounces. All initial conditions have the same initial energy for the projectile 
(U? =~-1.O. 0 = 1.0). 



2534 N Meyer et al 

4 
b (xw? 

Figure 4. (a) lime delay and number of bounces as function of the impaa parameter for 
a fixed initial phase of the dim %it = 3.33 when shooting with constant initial energy 
(vp = -1.0, o = 0.75) in the one-disc model. (b), (e) Enlarpemem of a region of (a) 
showing the self-similar geometry. 

in the first bounce, so the snail-structures as in figure 3 are erased. In the opposite case, 
although a larger number of bounces might be found, the regions in the initial condition 
space have no fractal structure. 

3.2. Constant initial Jacobi integral 

For the experiments with constant initial energy, although the Jacobi integral was conserved 
for every single trajectory, we were comparing the behaviour of initial conditions with 
different constants of motion. This means that we were studying the complete phase space 
of the problem. By fixing the Jacobi integral for every impact parameter we reduce the study 
of the dynamics to a subshell of the phase space. As we will see in the following sections, 
it is possible to explain the behaviour shown for the constant initial energy experiments in 
terms of the different characteristics of the Jacobi integral subshells. 

In figures 5 we show Monte Carlo results for the number of bounces in the initial 
conditions space for J = 1.0. The same kind of snail-structures as in figures 3 are found 
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Figure 5. Calculation With Monte Carlo choice for the initial conditions in the one-disc model. 
We mark the initial conditions leading to escape after (a )  m , (b) one, (c) two and (d )  three 
or more bounces. AU initial conditions have the same Jacobi integral ( J  = 1.0, o = 1.0). 

again. Figures 6(a)-(c) show the fractal structures for the time delay and the number 
of bounces for a constant initial phase p = 1.2. In contrast to figures 4(aHc), where 
a (self-similar) accumulation of singularities was found, figures 6(a)-(c) do not display 
any accumulation effect. In this case the plots of time delay and number of bounces are 
equivalent. As we will see below, the case J = 1.0 is completely hyperbolic, so there are 
no remnants of marginal stability (neither KAM-tori nor stable periodic orbits). In the case of 
constant initial energy, since the initial conditions correspond to different Jacobi integrals, 
the complete hyperbolicity within certain manifolds of constant J might not be apparent. 
Indeed, the accumulation points shown in figure 4(b) and (c) correspond to small values of 
the Jacobi integral where regions of stability were found. 

The chaotic snail-structures as shown in figures 5 conserve the scaling properties as 
before. For larger Jacobi integral the particle has larger incoming velocity so the snail 
shrinks after a few bounces until it disappears, leading then to regular scattering (although 
the system is not completely integrable). When reducing the Jacohi integral we still find 
complicate structures like those shown, all maintaining the hctal properties. Indeed, even 
for negative Jacobi integrals the same self-similar behaviour is found up to a minimal value. 
Lowering furthermore the value of the Jacobi integral reestablishes the regular behaviour 
in the system. This global behaviour in terms of the Jacobi integral will be explained in the 
following sections. 
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Flgvre 6. (a) l ime delay and number of bounces as function of the impact parameter for a axed 
initial phase of the disc (out = 1.2 when shooting with J = 1.0, o = 1.0. (b), (c) Enlargements 
of a region of (0)  showing the self-similar geomew. 

4. Periodic orbits 

In this section our goal is to understand the periodic orbit structure and relate it to the 
singularities in the deflection function described in the preceding section. If the incoming 
particle bounces radially its energy remains constant and the incoming and outgoing angles 
coincide. The simple periodic orbits keep the angles between bounces constant and are 
inscribed in the inner circle defined by the motion of the disc. These primitive periodic 
orbits have the same geometrical properties as those of the circular billiard. They look like 
stars or polygons, depending on whether the trajectories do or do not cross (figure 7(a)). 
Indeed, even the orbits with constant energy which are not closed in the sidereal frame (thus 
being quasi-periodic) are truly periodic in the synodic frame (figure 7(b)). As the primitive 
periodic orbits form the skeleton of the chaotic invariant set it will be essential to study 
their structure as a function of the Jacobi integral. 

E [--n/2, a/2] the incoming (outgoing) angle for a radial collision with 
&e convention that (Y is negative when the projectile runs against the rotation of the disc, 

Denoting by 
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Fme 7. (a) Periodic orbits in the sidereal coordinate system. (b) Periodic orbits m the synodic 
coordinate system. The value n denotes the number of complete Nms of the discs Mole the 
next collision. 

the relation between the Jacobi integral and (Y for these periodic orbits is given by 

Here, n denotes the number of full turns of the disc before the next bounce. The index 11 
denotes that the particle is always colliding with the same disc in comparison to the two-disc 
case. In figure 8 we plot Jll as a function of (Y for n = 0,1,2. From this figure we can see 
that for a fixed Jacobi integral we obtain a total of zero, one, two or more intersection points. 
The number of intersections is precisely the number of primitive periodic orbits allowed 
for that Jacobi integral, i.e. they are the only periodic orbits on which the energy remains 
constant. This structure is responsible for the behaviour of the scattering functions described 
in section 3. If the number of primitive periodic orbits for a fixed Jacobi integral is less 
than two, the system behaves as a regular scatterer. The system displays chaotic scattering 
if this number is equal to or greater than two. This implies that for J 5 1.173 13.. . or 
J 4 -0.457 71 . . . there is no topological cbaos. 

Figure 8 explains the structure of the scattering functions for constant initial energy 
experiments (figures 4(u) and (c)) where the scattering functions displayed accumulation 
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Figure S. Behaviour of the Jacobi integral for the different primitive periodic orbits as a function 
of the inoidence angle (r far radial collisions (quation (6)). 

points. There, every impact parameter corresponds to a different value of the Jacobi integral. 
The accumulation points correspond to small (even slightly negative) J-values where the 
curves to different n in figure 8 display many intersection points. As will be shown 
in the next section, when one of the intersection occurs very close to the maximum (or 
minimum) of one of the curves, stable regions are found. Since the probability that one of 
the intersections is close to a maximum (or minimum) grows as the absolute value of the 
Jacobi integral tends to zero i.e. n + 03, we will then find an increasing number of stable 
regions. 

5. Invariant manifolds of the primitive orbits 

In order to understand the details of the curves of figure 8 and the bifurcations to chaotic 
scattering as a function of the Jacobi integral, we define a Poincad section in the non- 
conjugate variables @ and a. The angle @ corresponds (in the synodic frame) to the angular 
position where the projectile bounces on the disc. @ is measured clockwise from the negative 
x-axis, i.e. a radial bounce implies @ = 0. (L is the angle formed by the outgoing velocity 
vector in the synodic coordinates referred to the normal line in the collision point, having 
here the same convention for the signs as introduced in the preceding section in terms of 
the direction of the rotation of the disc. In terms of these angles, the Jacobi integral is given 

(7) 
Here, U = (u t  + u1)1/2 denotes the magnitude of velocity after the collision Since 
equation (7) is a quadratic equation in U, we have, in principle, two natural ways of defining 
our Poincar6 section in terms of the sign chosen in the square root to define U. For J positive 
the assignment is straightforward, since one of the roots has no physical meaning and the 
Poincac6 surface of section is uniquely defined. For negative Jacobi integral two different 
Poincar6 sections might be considered since both roots of (7) lead to positive values for the 
magnitude of the velocity. In the following we consider the Poincare map defined by the 

by 
J = ;u2 - wu [R sin@ ++) - dsin(or)] . 
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points in the (6, or)-plane whose magnitude U is greater than ud0 = R sin@ + 6 )  - d sinol, 
i.e. we map just the outgoing conditions that correspond to the positive sign in the square 
root. Considering this symmetry adapted P o i n d  section we ensure that the fixed points 
(primitive periodic orbits) of our map lie on the line 6 = 0. 

For Jacobi integrals J z J,, = 1.173 13..  . , above the maximum of the curve 
corresponding to n = 0 in figure 8, there are no fixed points on the axis d, = 0. Our 
numerical results showed that indeed there are no fixed points at all. In figure 9 we show 
the Poincar6 section for J = 1.173, just below the maximum, where two fixed points 
are found; one elliptic and the other hyperbolic. This typically occurs after a saddle- 
centre bifurcation [lo]. Topological chaos arises from the homoclinic intersections of the 
saddle, whereas stable orbits are found around the wnne surrounded by w - t o r i  and fixed 
points of higher order. By further decreasing the value of the Jacobi integral the fixed 
points move apart and the elliptic one becomes inverse hyperbolic by a period-doubling 
bifurcation ( J  1.170.. .). Heteroclinic intersections are immediately found, but the 
tendrils of the manifolds form an incomplete horseshoe [ll]. A complete horseshoe is 
found at J FS 1.160. ... In figure 10 we plot the stable and unstable manifolds for the 
case J = 1, where the fixed points are located at or+ cx -0.146.. . and or- R -0.817.. . 
(see figure 8). The hetemclinic intersections form a complete Smale horseshoe. Thus a 
complete symbolic dynamic with two symbols can be constructed [ll]. The fixed point at 
or+ is hyperbolic, while the one at or- is inverse hyperbolic. The eigenvalues of the linearized 
map increase very fast from the bifurcation at J cx 1.173 13.. . to the case J = 1. 

Decreasing the Jacobi integral further, a complete binary horseshoe remains until 
J % 0.41 . . . . Then some of the tendrils are folded back into the fundamental rectangle 
leading to new intersections. From here on the invariant set is an incomplete horseshoe with 
an incomplete symbolic dynamic of four symbols (pruning) [12,13]. Connected with the 
homoclinic tangencies are infinite sequences of saddle-centre bifurcations creating further 
periodic points. The central saddlecentre bifurcation is a creation of two new fixed points. 

- 

- 

- 

- 

- 
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Figure 10. Stable and unstable manifolds for J = 1.0. The elliptic fixed point has changed into 
an inverse hypeholic one and the dynamics is now completely hyperbolic. 

Figure 11. Stable and unstable manifolds for 3 = 0.35. There are four fixed points after a 
second saddle-cenwe bifurcation. Again the fully hyperbolic case is reached. Note that the fixed 
points are located on the line p = 0. 

This happens exactly at the maximum of the curve It = 1 in figure 8. For still lower values 
of J the invariant sets tums into a complete horseshoe with four symbols. This structure 
is reached at the value of J % 0.40.. . and remains structurally stable in an interval of J 
values. In figure 11 we illustrate the stable and unstable manifolds for J = 0.35. In this 
case, there are four fixed points, two hyperbolic and two inverse hyperbolic. This is again 
a fully hyperbolic case leading to a complete Smale horseshoe. Notice that the new fixed 
points that appear in the map lie between the points that already existed. The symbolic 
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dynamic is now built fiom four symbols, each corresponding to one of the fixed points. 
Orbits displaying all combinations of these symbols are found numerically. 

For lower but still positive values of the Jacobi integral the same scenario as described 
above takes place for larger a: below the maximum of the n-curve the horseshoe structure is 
incomplete and is characterized with an incomplete symbolic dynamic of N = 2n symbols. 
A central saddle-centre bifurcation occurs at the maximum of the n-curve giving rise to the 
creation of a degenerate fixed point which leads to a hyperbolic and an elliptic fixed point. 
The elliptic point becomes inverse hyperbolic as the Jacobi integral is further reduced and 
later a complete horseshoe with N = 2n symbol values develops. Reducing J further, the 
complete hyperbolicity is lost and a new incomplete horseshoe is found which can be then 
described with an incomplete symbolic dynamic of N' = 2(n + 1) symbols etc. 

In the case of a negative Jacobi integral, the scenario is inverted in the sense that the 
extrema found for the n-curves are now minima. Accordingly an interval of J values 
with non-hyperbolicity lies above the value of the saddle-centre bifurcation. In addition 
the arrangement of hyperbolic and inverse hyperbolic (elliptic) points is reflected. The 
exception here is the hyperbolic point corresponding to n = 0, which does not have an 
inverse hyperbolic or elliptic counter part. It has heteroclinic connections with the other 
unstable fixed points, as soon as they are crsated. Fully regular motion is reached again 
for J < -0.457 71.. . . Notice, though the bifurcation scenario is exactly the same as for 
J t 0 but in the inverse sense discussed above, the number of fixed points is always odd. 
Therefore the symbolic dynamic is constructed out of N = 2n + 1 symbols. 

6. The two-disc scatterer 

We now proceed to the system of two rotating discs with the same geometrical conditions 
(figure 1) .  The second disc is diametrically opposed to the first one with respect to the centre 
of rotation. This model is a billiard version of the Copenhagen problem in astronomy [SI. 
Our goal is to distinguish some pure threebody effects that arise in this case. 

The relation between the Jacobi integral and a. for the primitive periodic orbits that 
involve both discs is given by 

w'(R - d)' 
J -  - [cos' or - (nrr - a.) sin 201 '' - 2(nr - a.)' 

Here, n has the same meaning as in (6), and JI;, J& are the Jacobi integrals for a particle 
running against (a. e 0) or with (or > 0) the rotation of the discs, respectively. In figure 12 
we plot J;Z and .I& as a function of the incoming angle for n = 0,1,2 and w = 1.0. Notice 
that for each n the curve 5; is joined smoothly to the corresponding n + l ' o f  5;. 

All the periodic orbits for the onedisc model are found in the two-disc model, but 
this does not hold in the opposite sense. The periodic orbits formed by segments involving 
bounces with both discs are true three-body features. In figure 13 we plot for J = 1 the stable 
and unstable manifolds of a periodic orbit that hits both discs alternately (a. x -1.270. . .). 
The iterates of these line segments come close to the other two fixed points building 
heteroclinic connections with their manifolds. The structure of the sections indicates the 
completeness of the horseshoe of three fixed points, implying a complete symbolic dynamics 
with three symbols. The scenario found for the onedisc scatterer is repeated here, with the 
addition of the two-disc orbits. Indeed the behaviour of the scattering functions described 
in section 3 for the two-disc model is qualitatively the same as for the one-disc case. 
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Figure 12. Behaviour of the Jacobi integral for the different primitive periodic orbits bouncing 
off both discs in the two-disc model as a function of the incidence angle a for radial collisions. 

Figure 13. Stable and unstable manifolds for J = 1.0 of the fixed point belonging to the 
two-disc orbit This plot is generated by iterates of the "ifo!ds of only this fixed point. The 
other two fixed points are marked by cmses. 

Note that the singularity in figure 12 for J;, for n = 0 at CY = 0 (when o # 0) 
comes from the infinite energy needed for the diametrical orbit to be completed without an 
increase in the number of tums n. The existence of this singularity implies that for any 
positive Jacobi integral there always exists one periodic orbit. Here the particle runs against 
the rotation of the discs and bounces of f  both alternately. This orbit is an example of a 
threebody effect and is also observed for the gravitational RTBP. 
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7. Conclusions 

In the present paper we have studied the dynamics of scattering model systems which 
are inspired by the RTBP of astronomy and by scattering off a rotating diatomic molecule. 
We have found in both of our models that the system may display chaotic or regUrar 
behaviour depending on the value of the Jacobi inte,d. Furthermore, we have derived 
analytically all the primitive periodic orbits of the systems, which are the skeleton of the 
underlying dynamics. These orbits have the convenient property that they conserve the 
energy. When the value of the Jacobi integral is such that more than one primitive periodic 
orbit exists, homoclinic and heteroclinic intersections between their manifolds are observed, 
implying topological chaos giving rise to a fractal set of singularities in the scattering 
functions. This is due to the possibility of forming an infinite family of new periodic 
orbits being overshadowed by segments of the~primitive ones allowed at the given value 
of the Jacobi integral. The grammar of those sequences depends on the Jacobi integral, 
since the homoclinic and heteroclinic intersections may or may not form a complete Smale 
horseshoe. For J approaching 0 the number of primitive periodic orbits in the invariant set 
grows without l i t .  For positive J this number is even, for negative J this number is odd. 
For any number of periodic orbits there is an interval of J-values in which the invariant set 
is completely hyperbolic. In this sense for the appropriate parameter interval our system 
contains completely hyperbolic horseshoes with any number of fixed points. The transition 
between regular and irregular behaviour is found to be a saddle-centre bifurcation. 

It is interesting to note that the features responsible for the irregular behaviour in the 
one-disc model are repeated in the twodisc model with the addition of some new families of 
periodic orbits. These new families are constructed from the primitive orbits which bounce 
off both discs. We find qualitatively different behaviour for the n = 0 orbit which exists for 
all positive J .  This will be the one feature we miss if we use a one-disc model to simulate 
properties of targets with two well defined centres. 

In the case of n = 0, the primitive periodic orbits arising exclusively from Jll are two- 
body effects, since those orbits just involve one disc. In the two-disc case, the singularity 
of J;2 at (I = 0 (which corresponds to the diametrical orbit that bounces both discs without 
letting the discs complete a turn over) is a true threebody effect, which does not influence 
the range of values on the Jacobi integral where irregular scattering is found. On the other 
hand, the curve J A  has an important effect on the behaviour of the system, since above its 
minimum homoclinic and heteroclinic intersections of the invariant manifolds are found, im- 
plying irregular behaviour of the system in a range of J where the one-disc model is regular. 

Surprisingly, we found that both scattering billiard models possess stable periodic orbits 
and KAM tori for some small ranges of the Jacobi integral. This is quite pleasant since 
stable bounded orbits are also known in the gravitational RTBP. 

The result of our classical models will also be interesting for comparison with 
corresponding quantum computations. In particular, it is known that there exists a close 
connection between classical periodic orbits and quantum behaviour. For the quantum 
treatment the possibility to transform to the rotating frame may be helpful since it avoids the 
time dependence. However, the quantum trcatmcnt in thc rotating frame is only approximate 
because of the problems of quantization in a non-inertial frame. 
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